628 research outputs found

    EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds.</p> <p>Results</p> <p>We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization.</p> <p>Conclusion</p> <p>EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.</p

    RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Get PDF
    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org

    Optimization of a 96-Well Electroporation Assay for Postnatal Rat CNS Neurons Suitable for Cost–Effective Medium-Throughput Screening of Genes that Promote Neurite Outgrowth

    Get PDF
    Following an injury, central nervous system (CNS) neurons show a very limited regenerative response which results in their failure to successfully form functional connections with their original target. This is due in part to the reduced intrinsic growth state of CNS neurons, which is characterized by their failure to express key regeneration-associated genes (RAGs) and by the presence of growth inhibitory molecules in CNS environment that form a molecular and physical barrier to regeneration. Here we have optimized a 96-well electroporation and neurite outgrowth assay for postnatal rat cerebellar granule neurons (CGNs) cultured upon an inhibitory cellular substrate expressing myelin-associated glycoprotein or a mixture of growth inhibitory chondroitin sulfate proteoglycans. Optimal electroporation parameters resulted in 28% transfection efficiency and 51% viability for postnatal rat CGNs. The neurite outgrowth of transduced neurons was quantitatively measured using a semi-automated image capture and analysis system. The neurite outgrowth was significantly reduced by the inhibitory substrates which we demonstrated could be partially reversed using a Rho Kinase inhibitor. We are now using this assay to screen large sets of RAGs for their ability to increase neurite outgrowth on a variety of growth inhibitory and permissive substrates

    The mTOR Substrate S6 Kinase 1 (S6K1) Is a Negative Regulator of Axon Regeneration and a Potential Drug Target for Central Nervous System Injury

    Get PDF
    The mammalian target of rapamycin (mTOR) positively regulates axon growth in the mammalian central nervous system (CNS). Although axon regeneration and functional recovery from CNS injuries are typically limited, knockdown or deletion of PTEN, a negative regulator of mTOR, increases mTOR activity and induces robust axon growth and regeneration. It has been suggested that inhibition of S6 kinase 1 (S6K1, gene symbol: RPS6KB1), a prominent mTOR target, would blunt mTOR's positive effect on axon growth. In contrast to this expectation, we demonstrate that inhibition of S6K1 in CNS neurons promotes neurite outgrowth in vitro by twofold to threefold. Biochemical analysis revealed that an mTOR-dependent induction of PI3K signaling is involved in mediating this effect of S6K1 inhibition. Importantly, treating female mice in vivo with PF-4708671, a selective S6K1 inhibitor, stimulated corticospinal tract regeneration across a dorsal spinal hemisection between the cervical 5 and 6 cord segments (C5/C6), increasing axon counts for at least 3 mm beyond the injury site at 8 weeks after injury. Concomitantly, treatment with PF-4708671 produced significant locomotor recovery. Pharmacological targeting of S6K1 may therefore constitute an attractive strategy for promoting axon regeneration following CNS injury, especially given that S6K1 inhibitors are being assessed in clinical trials for nononcological indications.SIGNIFICANCE STATEMENT Despite mTOR's well-established function in promoting axon regeneration, the role of its downstream target, S6 kinase 1 (S6K1), has been unclear. We used cellular assays with primary neurons to demonstrate that S6K1 is a negative regulator of neurite outgrowth, and a spinal cord injury model to show that it is a viable pharmacological target for inducing axon regeneration. We provide mechanistic evidence that S6K1's negative feedback to PI3K signaling is involved in axon growth inhibition, and show that phosphorylation of S6K1 is a more appropriate regeneration indicator than is S6 phosphorylation

    Enhanced Carbon Dioxide Electrolysis at Redox Manipulated Interfaces

    Get PDF
    Utilization of carbon dioxide from industrial waste streams offers significant reductions in global carbon dioxide emissions. Solid oxide electrolysis is a highly efficient, high temperature approach that reduces polarization losses and best utilizes process heat; however, the technology is relatively unrefined for currently carbon dioxide electrolysis. In most electrochemical systems, the interface between active components are usually of great importance in determining the performance and lifetime of any energy materials application. Here we report a generic approach of interface engineering to achieve active interfaces at nanoscale by a synergistic control of materials functions and interface architectures. We show that the redox-manipulated interfaces facilitate the atomic oxygen transfer from adsorbed carbon dioxide molecules to the cathode lattice that determines carbon dioxide electrolysis at elevated temperatures. The composite cathodes with in situ grown interfaces demonstrate significantly enhanced carbon dioxide electrolysis and improved durability

    Stress Increases Peripheral Axon Growth and Regeneration Through Glucocorticoid Receptor-Dependent Transcriptional Programs

    Get PDF
    Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity

    A regional informatics platform for coordinated antibiotic resistant infection tracking, alerting and prevention

    Get PDF
    Background. We developed and assessed the impact of a patient registry and electronic admission notification system relating to regional antimicrobial resistance (AMR) on regional AMR infection rates over time. We conducted an observational cohort study of all patients identified as infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) and/or vancomycin-resistant enterococci (VRE) on at least 1 occasion by any of 5 healthcare systems between 2003 and 2010. The 5 healthcare systems included 17 hospitals and associated clinics in the Indianapolis, Indiana, region. Methods. We developed and standardized a registry of MRSA and VRE patients and created Web forms that infection preventionists (IPs) used to maintain the lists. We sent e-mail alerts to IPs whenever a patient previously infected or colonized with MRSA or VRE registered for admission to a study hospital from June 2007 through June 2010. Results. Over a 3-year period, we delivered 12 748 e-mail alerts on 6270 unique patients to 24 IPs covering 17 hospitals. One in 5 (22%–23%) of all admission alerts was based on data from a healthcare system that was different from the admitting hospital; a few hospitals accounted for most of this crossover among facilities and systems. Conclusions. Regional patient registries identify an important patient cohort with relevant prior antibiotic-resistant infection data from different healthcare institutions. Regional registries can identify trends and interinstitutional movement not otherwise apparent from single institution data. Importantly, electronic alerts can notify of the need to isolate early and to institute other measures to prevent transmission

    Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas

    Get PDF
    Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ´relict´ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.Fil: Simon, Chris. University of Connecticut; Estados UnidosFil: Gordon, Eric R. L.. University of Connecticut; Estados UnidosFil: Moulds, M.S.. Australian Museum Research Institute; AustraliaFil: Cole, Jeffrey A.. Pasadena City College; Estados UnidosFil: Haji, Diler. University of Connecticut; Estados UnidosFil: Lemmon, Alan R.. Florida State University; Estados UnidosFil: Lemmon, Emily Moriarty. Florida State University; Estados UnidosFil: Kortyna, Michelle. Florida State University; Estados UnidosFil: Nazario, Katherine. University of Connecticut; Estados UnidosFil: Wade, Elizabeth J.. Curry College. Department of Natural Sciences and Mathematics; Estados Unidos. University of Connecticut; Estados UnidosFil: Meister, Russell C.. University of Connecticut; Estados UnidosFil: Goemans, Geert. University of Connecticut; Estados UnidosFil: Chiswell, Stephen M.. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Pessacq, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Veloso, Claudio. Universidad de Chile; ChileFil: McCutcheon, John P.. University of Montana; Estados UnidosFil: Lukasik, Piotr. University of Montana; Estados Unidos. Swedish Museum of Natural History. Department of Bioinformatics and Genetics; Sueci
    corecore